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Abstract. We present some new two- and three-parameter solutions of the MPST equation. 
All the three-parameter solutions are physical in the sense of asymptotic flatness. The 
simplest member of the three-parameter series of solutions is identical with a three- 
parameter solution of the static Einstein-Maxwell equations recently discovered by 
Bonnor. 

1. Introduction 

Misra et aZ(l973) have developed a new method for generating the Weyl class as well as 
a more general class of electromagnetic fields. They have shown that by the same 
procedure a new class of Maxwell fields can be generated which are not of the Weyl 
type. They have presented a particular solution of this class which represents an 
asymptotically flat gravitational field of a body possessing an electric or magnetic dipole 
moment. At large distances and in the case of the vanishing dipole parameter, the 
gravitational field goes over to the Schwarzschild field. 

Starting from the solution mentioned above (we call it the MPST solution after Misra 
et al) and making use of Kinnersley’s method of generating stationary Einstein- 
Maxwell fields from known solutions of Einstein-Maxwell equations, Esposito and 
Witten (1 973) have obtained a five-parameter solution which describes a source 
containing mass, electric charge, magnetic dipole, higher multiple moments of all three 
kinds and angular momentum. This solution is also asymptotically flat. 

Later Wang (1974) has presented some solutions of the MPST equation (briefly 
derived in § 2). In this paper we present some new two- and three-parameter solutions 
of the same equation. All the three-parameter solutions are physical in the sense of 
asymptotic flatness. It is interesting to note that the simplest of these solutions (charged 
MPST solution derived in § 4.1) is identical with a three-parameter solution of the static 
Einstein-Maxwell equations recently discovered by Bonnor (1979). 

Before proceeding to work on the MPST equation, it is important to point out that 
Misra et a1 used the electromagnetic energy-momentum tensor in the form 

Ewy = F,,K - k,yF,pFpp 

E,, = - F,,Fz + agw,F,pFup. 

(1) 

(2) 

instead of the usual form 
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Therefore, as pointed out by Ward (1974), the physical situation will be obtained by 
adopting the following transformations for the electromagnetic potential C, the dipole 
moment parameter e and the charge parameter y 

C+iC e + i e  y+iy .  (3) 

As shown by Misra et a1 and also in this paper, it is advantageous mathematically to 
work on the Ernst-like MPST equation to derive new solutions. But one must keep in 
view the transformations (3) that must be made to arrive at the physical results. We 
make use of these transformations in one instance only, namely, to show the identity of 
Bonnor's three-parameter solution (1979) with ours in 9 4.1. 

2. The MPST equation 

A brief outline of the derivation of the MPST equation is presented here. 
Let us consider a static axially symmetric metric given by 

d s 2 =  f dt2--[dp2+d~*]--dp e2 P2 2 

f f (4) 

where f and k are functions of p and z .  
Let us define the electromagnetic field as follows 

where A(p, z )  and B(p, z )  are respectively the magnetic and electric potentials. Misra 
et a1 consider situations such that A is proportional to B in the following way 

B = C sin E A = C COS E (6) 

where C is a new electromagnetic potential and E is a constant. Now Misra et a1 
introduce a complex function 6 defined by 

In terms of 5 the Einstein-Maxwell equations are expressed as 

(55" - l)v2y = 2y*vy ' vy 

and 

4" being the complex conjugate of 6. We shall refer to (8) as the MPST equation. It is 
Ernst-like (1968) in form. 
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3. A new two-parameter solution 

Writing E for (5  - 1)/(5 + 1) the MPST equation (8) may be written in the following form 

(Re E)V’E = V E  * V E .  (1 1) 

Now Tanabe (1979) has shown that from a known solution E = K +ih one can generate a 
new solution E ’  = ~ ’ + i h ’  in the following way. (1 1) may be rewritten in the form 

(Re ~ ) p - l V  - ( ~ V E )  = V E  V E .  (12) 
Since E = K +ih (12) is equivalent to the simultaneous equations 

V * ( ~ V K )  + 4 V h  - Vh = 0 
K K 

V ( 5 V h )  = 0. 

One can easily see that the new functions K ’  and h‘ satisfy (13) and (14) if they are 
related to the known functions K and h in the following manner 

K ’ = p / K  (15) 

q h ‘  = (p/K’)Vh (16) 
where 

In other words, if E = K +ih is a solution, then 

E ’ =  K’+ijh’ (18) 

j’ = -1 j ”  = j ,  (19) 

( E ’ ) ‘  = E .  (20) 

is another solution, where j is a symbol having the properties (Tanabe 1978) 

It is easy to check that the iteration of this operation twice yields the original equation 

This means that we can obtain only one new solution from the old by the transformation 
E + E ‘ .  By this operation f’ and C’ are given from (15) and (16) by 

(21) frw = P/f 112 

6C’=  (p/f)VC. (22) 
The MPST solution in spherical polar coordinates (Misra et a1 1973) is 

r2+e’cos2e-2mr 
ds’ = ( ) dt’- 

r’ + e’ cos’ e 
(r’ - 2mr + e’ cos’ e)’(r’ + e’ cos’ e)’ 2 

(r’ - 2mr + e’ cos’ e + m’ sin’ 

2me cos 8 
r’ + e2 cos’ e C =  
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where m is the mass of the object and 2me its electric or  magnetic moment. The new 
solution has 

11 ,2 -  (r2-2mr+e2) ' /2(r2+e2 cos2 e )  
sin 0 

f - r 2 -  2mr + e2 cos2 8 

2mer sin2 e 
r 2 -  2mr + e2  cos2 8' 

C' = 

The complete metric may be constructed easily. The asymptotic form of C' shows that 
it represents a monopolar charge with axial symmetry. Further (25) shows that the 
solution is not asymptotically flat. It appears that if the original solution is asymptotic- 
ally flat, the new solution obtained by Tanabe's method (1979) misses this property. 

4. Three-parameter solutions 

4.1. The charged MPST solution 

It is obvious that if So is a solution of (8) then 

6 = e"tO (27)  
is also a solution, where a is a real parameter. 

coordinates (p,  z )  by 
Expressing (8) in spheroidal coordinates (x ,  y )  which are related to cylindrical 

p = p ( x 2 -  1)1'2(1- y y  (28) 

z = pxy (29)  

p being a scale factor, Misra et a1 find the solution of (8) to be 

60 = px + iqy (30) 
where p 2 + q 2  = 1. Equations ( 9 )  and (10)  are independent of a and so k is unchanged 
by the transformation (27).  

From (27)  together with (30) and (7) we obtain 

(31) 
px cos a - q y  sin a + 1 

( p ~ + 1 ) ~ + q ~ y ~ + 2 p ( c o s a - l ) x - 2 q y  sin& 
f 1 / 2 =  1 - 2  

and 
px sin a + q y  cos a 

p 2 x 2 + q 2 y 2 +  1 + 2 ( p x  cos a - q y  sin a) '  
c = 2  

By a coordinate transformation x = ( r  - m ) / p ,  y =cos 8 the metric can be expressed as 

m r + y ( y - e  cos 0) ( r 2  - 2mr + e2  cos2 - y2)2 

dr2 
r - 2 m r + e  - y  

x [ r 2 +  (e  cos e - y ) 2 ~ 2 (  

2 2  2 [r2+(e cos e - y )  1 ( r  - 2 m r + e 2 -  y2 )  

( r 2  - 2mr + e2  cos2 e - y212 
- sin2 8 d q 2  (33) 
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where m, e and y are related to p ,  q, a and p by 

q = e(m2+ y2)- ’ /2  

sin a = y(m2 + y2)-’l2 

2 -112 p = P ( m 2 + y  

cos a = m(m2 + y2)-l” 

and 
2 2  p = m  + y 2 - e 2 .  

The electromagnetic potential will take the form 

( r -m)y+em cos0 
r2+(e  cos e - y i 2  ’ 

c = 2  

(33) will reduce to the MPST solution if one puts y = 0. 
Under transformation (3), (33) and (34) become 

ds2 = ( 1 - 2 
mr-y(y-ecos8)  
r2 - (e cos e - y12 

(r2 - 2mr - e 2  cos2 e + y 2 ) 2  
[r2 - 2mr + m2 51n2 e - (e’ - y 2 )  c052 01’ ) dt2-  

x [r2 - (e cos 8 - y1212( 
dr2 

r -2mr -e2+y  
+ de2) 

[?-(e cos 0 - y )  2 2  ] (r 2 -2mr-e2+y2)  

(r2-2mr-e2cos2 e+y2 l2  
- sin2 8 dcp2 

( r -m)y+em cos 6 
r2 - (e cos e - y l 2  ‘ 

c = 2  

Recently Bonnor (1979) has given a three-parameter solution as follows 

ds2 = - W2[P2Q-3(Z-1 dr2 +de2)  + Z F 2  sin2 8 d42]  +P2 W - 2  dt2 

cp = W-’[-e(r-;m)+mb cos e] 

P = (r -:m)2- a 2 +  b 2  sin2 8 

Q = ( r - - m )  - a  cos 6 

W = r 2 - ( b  c o ~ B + : e ) ~  

z = (r - imI2 - a 2  

where 

1 2  2 2 

and the arbitrary constants are related by 

a‘= b2+i(m2-e2).  

(34) 

Now, replacing ;e, ;m and b by - y, m and e respectively in equations (37)-(40), one 
will find that this solution is identical with our solution represented by (35) and (36). y 
represents the charge of the dipole of moment 2me. 

4.2. Charged Weyl and Wang solutions 

The Weyl family of solutions of (8) in spheroidal coordinates is given by 

( x  + 1>& + ( x  - 1)& 
= (x + 1)& - (x - l)s 
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where the parameter S takes only the positive integral values. 
using (7) one can have 

112 - 2(x2  - l ) s  
- ( x  + 1)2s(1 +cos a )  + ( x  - 1 ) 2 s ( 1  -cos a )  

[ ( x  + 1)” - ( x  - I.)~’] sin a 
( x  + 1)2s(1 +cos a )  + ( x  - 1)2s(1 -cos a)‘ 

C =  

Applying (27)  to (41)  and 

(42)  

(43)  

Since ( 9 )  and (10)  are unaffected by the transformation (27) ,  we obtain 

eZk = ( x 2 -  1)“/(x2-y2)”. (44)  
The solution given by equations (42)-(44) is asymptotically flat. The asymptotic form of 
(42)  is 

28 sin a C.=-* 
X 

Wang (1974) obtained a solution of (8) in the form 

t = a lp  

(45)  

where a and p are complex polynomials of the spheroidal coordinates x and y .  f and 
C are given by 

f‘” = A / B  (47)  

C = D/B (48)  

and 

where with a = u +iv and p = m +in, 
2 2  2 2  A = u  + v  - m  --It 

B = ( u  +m)’+(v +a)’ 

D = 2(um - u n )  

and k is given by 

(49)  

Applying (27)  to (46)  and using ( 7 )  we obtain 

m2 + n + ( u m  + on) cos a + (un - vm) sin a 
f% 1 - 2  u 2 + v 2 + m 2 + n 2 + 2 ( u m + v n ) c o s ~ + 2 ( u n - v m ) s i n a  (51) 

( u m  +vn) sin a +(vm - u n )  cos a 
~ ~ + ~ ~ + m ~ + n ~ + ~ ~ u m + v n ~ c o s a + ~ ~ u n - v m ~ s i n a ’  

c = 2  

k will remain unchanged and hence is given by (50). 
The asymptotic form of (52)  when q = 0 is 

2 sin a Cz-. 
X 

(53)  

Thus equations (50)-(52) represent the gravitational field of a body possessing a charge 
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together with an electric or magnetic moment. It may easily be seen that this metric is 
asymptotically flat. 

4.3. Charged all-multipole solution 

We have recently obtained a solution of (8) for an object having all kinds of multipoles 
in the form (Krori and Chaudhury 1981) 

5 0  = ( P  +iq)(g + l ) / (g  - 1) 

g = exp D / ( Y  - X I 1  

(54) 

( 5 5 )  

where 

wi thp2+q2=1 .  
From (54), (27) and (7) we obtain 

(g'- l ) ( p  sin a + q cos a )  
( p  cosa-qs incr+l ) (g2-1)+2 '  

C =  (57) 

eZk will remain unchanged under the transformation (27). a = 0 will lead to our 
solution. The asymptotic form of C when q = 0 is 

sin a C..1--. 

Thus the constant a may be interpreted as a parameter associated with the charge of the 
object. The asymptotic flatness of the metric can be seen easily. 
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